目錄
- 一、簡介
- 二、基本模型
- BSON 數據類型
- 分佈式ID
- 三、操作語法
- 四、索引
- 索引特性
- 索引分類
- 索引評估、調優
- 五、集群
- 分片機制
- 副本集
- 六、事務與一致性
- 一致性
- 小結
一、簡介
MongoDB 是一款流行的開源文檔型數據庫,從它的命名來看,確實是有一定野心的。
MongoDB 的原名一開始來自於 英文單詞"Humongous", 中文含義是指"龐大" ,即命名者的意圖是可以處理大規模的數據。
但筆者更喜歡稱呼它為 "芒果"數據庫,除了譯音更加相近之外,原因還來自於這幾年使用 MongoDB 的兩層感覺:
- 第一層感受是"爽",使用這個文檔數據庫的特點是幾乎不受什麼限制,一方面Json文檔式的結構更容易理解,而無Schema約束也讓DDL管理更加簡單,一切都可以很快速的進行。
- 第二層感受是"酸爽",這點相信幹運維或是支撐性工作的兄弟感受會比較深刻,MongoDB 由於入門體驗"太過於友好",導致一些團隊認為用好這個數據庫是個很簡單的事情,所以開發兄弟在存量系統上埋一些坑也是正常的事情。
- 所謂交付一時爽,維護火葬場.. 當然了,這句話可能有些過。 但這裡的潛臺詞是:與傳統的RDBMS數據庫一樣,MongoDB 在使用上也需要認真的考量和看護,不然的化,會遇到更多的坑。
那麼,儘管文檔數據庫在選型上會讓一些團隊望而卻步,仍然不阻礙該數據庫所獲得的一些支持,比如 DB-Engine 上的排名:

圖-DBEngine排名
在全部的排名中,MongoDB 長期排在第5位(文檔數據庫排名第1位),同時也是最受歡迎的 NoSQL 數據庫。
另外,MongoDB 的社區一直比較活躍,加上商業上的驅動(MongoDB於2017年在納斯達克上市),這些因素都推動了該開源數據庫的發展。
MongoDB 數據庫的一些特性:
- 面向文檔存儲,基於JSON/BSON 可表示靈活的數據結構
- 動態 DDL能力,沒有強Schema約束,支持快速迭代
- 高性能計算,提供基於內存的快速數據查詢
- 容易擴展,利用數據分片可以支持海量數據存儲
- 豐富的功能集,支持二級索引、強大的聚合管道功能,為開發者量身定做的功能,如數據自動老化、固定集合等等。
- 跨平臺版本、支持多語言SDK..
假定你是初次瞭解 MongoDB,下面的內容將能幫助你對該數據庫技術的全貌產生一定的瞭解。
二、基本模型
數據結構對於一個軟件來說是至關重要的,MongoDB 在概念模型上參考了 SQL數據庫,但並非完全相同。
關於這點,也有人說,MongoDB 是 NoSQL中最像SQL的數據庫..
如下表所示:

- database 數據庫,與SQL的數據庫(database)概念相同,一個數據庫包含多個集合(表)
- collection 集合,相當於SQL中的表(table),一個集合可以存放多個文檔(行)。 不同之處就在於集合的結構(schema)是動態的,不需要預先聲明一個嚴格的表結構。更重要的是,默認情況下 MongoDB 並不會對寫入的數據做任何schema的校驗。
- document 文檔,相當於SQL中的行(row),一個文檔由多個字段(列)組成,並採用bson(json)格式表示。
- field 字段,相當於SQL中的列(column),相比普通column的差別在於field的類型可以更加靈活,比如支持嵌套的文檔、數組。
- 此外,MongoDB中字段的類型是固定的、區分大小寫、並且文檔中的字段也是有序的。
另外,SQL 還有一些其他的概念,對應關係如下:
- _id 主鍵,MongoDB 默認使用一個_id 字段來保證文檔的唯一性。
- reference 引用,勉強可以對應於 外鍵(foreign key) 的概念,之所以是勉強是因為 reference 並沒有實現任何外鍵的約束,而只是由客戶端(driver)自動進行關聯查詢、轉換的一個特殊類型。
- view 視圖,MongoDB 3.4 開始支持視圖,和 SQL 的視圖沒有什麼差異,視圖是基於表/集合之上進行動態查詢的一層對象,可以是虛擬的,也可以是物理的(物化視圖)。
- index 索引,與SQL 的索引相同。
- $lookup,這是一個聚合操作符,可以用於實現類似 SQL-join 連接的功能
- transaction 事務,從 MongoDB 4.0 版本開始,提供了對於事務的支持
- aggregation 聚合,MongoDB 提供了強大的聚合計算框架,group by 是其中的一類聚合操作。
BSON 數據類型
MongoDB 文檔可以使用 Javascript 對象表示,從格式上講,是基於 JSON 的。
一個典型的文檔如下:
{
"_id": 1,
"name" : { "first" : "John", "last" : "Backus" },
"contribs" : [ "Fortran", "ALGOL", "Backus-Naur Form", "FP" ],
"awards" : [
{
"award" : "W.W. McDowell Award",
"year" : 1967,
"by" : "IEEE Computer Society"
}, {
"award" : "Draper Prize",
"year" : 1993,
"by" : "National Academy of Engineering"
}
]
}
曾經,JSON 的出現及流行讓 Web 2.0 的數據傳輸變得非常簡單,所以使用 JSON 語法是非常容易讓開發者接受的。
但是 JSON 也有自己的短板,比如無法支持像日期這樣的特定數據類型,因此 MongoDB 實際上使用的是一種擴展式的JSON,叫 BSON(Binary JSON)。
BSON 所支持的數據類型包括:
圖-BSON類型
分佈式ID
在單機時代,大多數應用可以使用數據庫自增式ID 來作為主鍵。 傳統的 RDBMS 也都支持這種方式,比如 mysql 可以通過聲明 auto_increment來實現自增的主鍵。 但一旦數據實現了分佈式存儲,這種方式就不再適用了,原因就在於無法保證多個節點上的主鍵不出現重複。
為了實現分佈式數據ID的唯一性保證,應用開發者提出了自己的方案,而大多數方案中都會將ID分段生成,如著名的 snowflake 算法中就同時使用了時間戳、機器號、進程號以及隨機數來保證唯一性。
MongoDB 採用 ObjectId 來表示主鍵的類型,數據庫中每個文檔都擁有一個_id 字段表示主鍵。
_id 的生成規則如下:
圖-ObjecteID
其中包括:
- 4-byte Unix 時間戳
- 3-byte 機器 ID
- 2-byte 進程 ID
- 3-byte 計數器(初始化隨機)
值得一提的是 _id 的生成實質上是由客戶端(Driver)生成的,這樣可以獲得更好的隨機性,同時降低服務端的負載。
當然服務端也會檢測寫入的文檔是否包含_id 字段,如果沒有就生成一個。
三、操作語法
除了文檔模型本身,對於數據的操作命令也是基於JSON/BSON 格式的語法。
比如插入文檔的操作:
db.book.insert(
{
title: "My first blog post",
published: new Date(),
tags: [ "NoSQL", "MongoDB" ],
type: "Work",
author : "James",
viewCount: 25,
commentCount: 2
}
)
執行文檔查找:
db.book.find({author : "James"})
更新文檔的命令:
db.book.update(
{"_id" : ObjectId("5c61301c15338f68639e6802")},
{"$inc": {"viewCount": 3} }
)
刪除文檔的命令:
db.book.remove({"_id":
ObjectId("5c612b2f15338f68639e67d5")})
在傳統的SQL語法中,可以限定返回的字段,MongoDB可以使用Projection來表示:
db.book.find({"author": "James"},
{"_id": 1, "title": 1, "author": 1})
實現簡單的分頁查詢:
db.book.find({})
.sort({"viewCount" : -1})
.skip(10).limit(5)
這種基於BSON/JSON 的語法格式並不複雜,它的表達能力或許要比SQL更加強大。
與 MongoDB 做法類似的還有 ElasticSearch,後者是搜索數據庫的佼佼者。
那麼,一個有趣的問題是 MongoDB 能不能用 SQL進行查詢?
當然是可以!
但需要注意這些功能並不是 MongoDB 原生自帶的,而需要藉由第三方工具平臺實現:
- 客戶端使用SQL,可以使用 mongobooster、studio3t 這樣的工具
- 服務端的話,可以看看 presto 之類的一些平臺..
四、索引
無疑,索引是一個數據庫的關鍵能力,MongoDB 支持非常豐富的索引類型。
利用這些索引,可以實現快速的數據查找,而索引的類型和特性則是針對不同的應用場景設計的。
索引的技術實現依賴於底層的存儲引擎,在當前的版本中 MongoDB 使用 wiredTiger 作為默認的引擎。
在索引的實現上使用了 B+樹的結構,這與其他的傳統數據庫並沒有什麼不同。
所以這是個好消息,
大部分基於SQL數據庫的一些索引調優技巧在 MongoDB 上仍然是可行的。圖-B+樹
使用 ensureIndexes 可以為集合聲明一個普通的索引:
db.book.ensureIndex({author: 1})
author後面的數字 1 代表升序,如果是降序則是 -1
實現複合式(compound)的索引,如下:
db.book.ensureIndex({type: 1, published: 1})
只有對於複合式索引時,索引鍵的順序才變得有意義
如果索引的字段是數組類型,該索引就自動成為數組(multikey)索引:
db.book.ensureIndex({tags: 1})
MongoDB 可以在複合索引上包含數組的字段,但最多隻能包含一個
索引特性
在聲明索引時,還可以通過一些參數化選項來為索引賦予一定的特性,包括:
- unique=true,表示一個唯一性索引
- expireAfterSeconds=3600,表示這是一個TTL索引,並且數據將在1小時後老化
- sparse=true,表示稀疏的索引,僅索引非空(non-null)字段的文檔
- partialFilterExpression: { rating: { $gt: 5 },條件式索引,即滿足計算條件的文檔才進行索引
索引分類
除了普通索引之外,MongoDB 支持的類型還包括:
- 哈希(HASH)索引,哈希是另一種快速檢索的數據結構,MongoDB 的 HASH 類型分片鍵會使用哈希索引。
- 地理空間索引,用於支持快速的地理空間查詢,如尋找附近1公里的商家。
- 文本索引,用於支持快速的全文檢索
- 模糊索引(Wildcard Index),一種基於匹配規則的靈活式索引,在4.2版本開始引入。
索引評估、調優
使用 explain() 命令可以用於查詢計劃分析,進一步評估索引的效果。
如下:
> db.test.explain().find( { a : 5 } )
{
"queryPlanner" : {
...
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"a" : 5
},
"indexName" : "a_1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {"a" : ["[5.0, 5.0]"]}
}
}},
...
}
從結果 winningPlan 中可以看出執行計劃是否高效,比如:
- 未能命中索引的結果,會顯示COLLSCAN
- 命中索引的結果,使用IXSCAN
- 出現了內存排序,顯示為 SORT
關於 explain 的結果說明,可以進一步參考文檔:
https://docs.mongodb.com/manual/reference/explain-results/index.html
五、集群
在大數據領域常常提到的4V特徵中,Volume(數據量大)是首當其衝被提及的。
由於單機垂直擴展能力的侷限,水平擴展的方式則顯得更加的靠譜。 MongoDB 自帶了這種能力,可以將數據存儲到多個機器上以提供更大的容量和負載能力。
此外,同時為了保證數據的高可用,MongoDB 採用副本集的方式來實現數據複製。
一個典型的MongoDB集群架構會同時採用分片+副本集的方式,如下圖:
圖-MongoDB 分片集群(Shard Cluster)
架構說明
- 數據分片(Shards)
- 分片用於存儲真正的集群數據,可以是一個單獨的 Mongod實例,也可以是一個副本集。 生產環境下Shard一般是一個 Replica Set,以防止該數據片的單點故障。
- 對於分片集合(sharded collection)來說,每個分片上都存儲了集合的一部分數據(按照分片鍵切分),如果集合沒有分片,那麼該集合的數據都存儲在數據庫的 Primary Shard中。
- 配置服務器(Config Servers)
- 保存集群的元數據(metadata),包含各個Shard的路由規則,配置服務器由一個副本集(ReplicaSet)組成。
- 查詢路由(Query Routers)
- Mongos是 Sharded Cluster 的訪問入口,其本身並不持久化數據 。Mongos啟動後,會從 Config Server 加載元數據,開始提供服務,並將用戶的請求正確路由到對應的Shard。
- Sharding 集群可以部署多個 Mongos 以分擔客戶端請求的壓力。
分片機制
下面的幾個細節,對於理解和應用 MongoDB 的分片機制比較重要,所以有必要提及一下:
1. 數據如何切分
首先,基於分片切分後的數據塊稱為 chunk,一個分片後的集合會包含多個 chunk,每個 chunk 位於哪個分片(Shard) 則記錄在 Config Server(配置服務器)上。
Mongos 在操作分片集合時,會自動根據分片鍵找到對應的 chunk,並向該 chunk 所在的分片發起操作請求。
數據是根據分片策略來進行切分的,而分片策略則由 分片鍵(ShardKey)+分片算法(ShardStrategy)組成。
MongoDB 支持兩種分片算法:
- 範圍分片
如上圖所示,假設集合根據x字段來分片,x的取值範圍為[minKey, maxKey](x為整型,這裡的minKey、maxKey為整型的最小值和最大值),將整個取值範圍劃分為多個chunk,每個chunk(默認配置為64MB)包含其中一小段的數據:
如Chunk1包含x的取值在[minKey, -75)的所有文檔,而Chunk2包含x取值在[-75, 25)之間的所有文檔...
範圍分片能很好的滿足範圍查詢的需求,比如想查詢x的值在[-30, 10]之間的所有文檔,這時 Mongos 直接能將請求路由到 Chunk2,就能查詢出所有符合條件的文檔。 範圍分片的缺點在於,如果 ShardKey 有明顯遞增(或者遞減)趨勢,則新插入的文檔多會分佈到同一個chunk,無法擴展寫的能力,比如使用_id作為 ShardKey,而MongoDB自動生成的id高位是時間戳,是持續遞增的。
- 哈希分片
Hash分片是根據用戶的 ShardKey 先計算出hash值(64bit整型),再根據hash值按照範圍分片的策略將文檔分佈到不同的 chunk。
由於 hash值的計算是隨機的,因此 Hash 分片具有很好的離散性,可以將數據隨機分發到不同的 chunk 上。 Hash 分片可以充分的擴展寫能力,彌補了範圍分片的不足,但不能高效的服務範圍查詢,所有的範圍查詢要查詢多個 chunk 才能找出滿足條件的文檔。
2. 如何保證均衡
如前面的說明中,數據是分佈在不同的 chunk上的,而 chunk 則會分配到不同的分片上,那麼如何保證分片上的 數據(chunk) 是均衡的呢?
在真實的場景中,會存在下面兩種情況:
- A. 全預分配,chunk 的數量和 shard 都是預先定義好的,比如 10個shard,存儲1000個chunk,那麼每個shard 分別擁有100個chunk。
- 此時集群已經是均衡的狀態(這裡假定)
- B. 非預分配,這種情況則比較複雜,一般當一個 chunk 太大時會產生分裂(split),不斷分裂的結果會導致不均衡;或者動態擴容增加分片時,也會出現不均衡的狀態。 這種不均衡的狀態由集群均衡器進行檢測,一旦發現了不均衡則執行 chunk數據的搬遷達到均衡。
MongoDB 的數據均衡器運行於 Primary Config Server(配置服務器的主節點)上,而該節點也同時會控制 Chunk 數據的搬遷流程。
圖-數據自動均衡
對於數據的不均衡是根據兩個分片上的 Chunk 個數差異來判定的,閾值對應表如下:
MongoDB 的數據遷移對集群性能存在一定影響,這點無法避免,目前的規避手段只能是將均衡窗口對齊到業務閒時段。
3. 應用高可用
應用節點可以通過同時連接多個 Mongos 來實現高可用,如下:
圖- mongos 高可用
當然,連接高可用的功能是由 Driver 實現的。
副本集
副本集又是另一個話題,實質上除了前面架構圖所體現的,副本集可以作為 Shard Cluster 中的一個Shard(片)之外,對於規模較小的業務來說,也可以使用一個單副本集的方式進行部署。
MongoDB 的副本集採取了一主多從的結構,即一個Primary Node + N* Secondary Node的方式,數據從主節點寫入,並複製到多個備節點。
典型的架構如下:
利用副本集,我們可以實現::
- 數據庫高可用,主節點宕機後,由備節點自動選舉成為新的主節點;
- 讀寫分離,讀請求可以分流到備節點,減輕主節點的單點壓力。
請注意,讀寫分離只能增加集群"讀"的能力,對於寫負載非常高的情況卻無能為力。
對此需求,使用分片集群並增加分片,或者提升數據庫節點的磁盤IO、CPU能力可以取得一定效果。
選舉
MongoDB 副本集通過 Raft 算法來完成主節點的選舉,這個環節在初始化的時候會自動完成,如下面的命令:
config = {
_id : "my_replica_set",
members : [
{_id : 0, host : "rs1.example.net:27017"},
{_id : 1, host : "rs2.example.net:27017"},
{_id : 2, host : "rs3.example.net:27017"},
]
}
rs.initiate(config)
initiate 命令用於實現副本集的初始化,在選舉完成後,通過 isMaster()命令就可以看到選舉的結果:
> db.isMaster()
{
"hosts" : [
"192.168.100.1:27030",
"192.168.100.2:27030",
"192.168.100.3:27030"
],
"setName" : "myReplSet",
"setVersion" : 1,
"ismaster" : true,
"secondary" : false,
"primary" : "192.168.100.1:27030",
"me" : "192.168.100.1:27030",
"electionId" : ObjectId("7fffffff0000000000000001"),
"ok" : 1
}
受 Raft算法的影響,主節點的選舉需要滿足"大多數"原則,可以參考下表:
因此,為了避免出現平票的情況,副本集的部署一般採用是基數個節點,比如3個,正所謂三人行必有我師..
心跳
在高可用的實現機制中,心跳(heartbeat)是非常關鍵的,判斷一個節點是否宕機就取決於這個節點的心跳是否還是正常的。
副本集中的每個節點上都會定時向其他節點發送心跳,以此來感知其他節點的變化,比如是否失效、或者角色發生了變化。
利用心跳,MongoDB 副本集實現了自動故障轉移的功能,如下圖:
默認情況下,節點會每2秒向其他節點發出心跳,這其中包括了主節點。 如果備節點在10秒內沒有收到主節點的響應就會主動發起選舉。
此時新一輪選舉開始,新的主節點會產生並接管原來主節點的業務。 整個過程對於上層是透明的,應用並不需要感知,因為 Mongos 會自動發現這些變化。
如果應用僅僅使用了單個副本集,那麼就會由 Driver 層來自動完成處理。
複製
主節點和備節點的數據是通過日誌(oplog)複製來實現的,這很類似於 mysql 的 binlog。
在每一個副本集的節點中,都會存在一個名為local.oplog.rs的特殊集合。 當 Primary 上的寫操作完成後,會向該集合中寫入一條oplog,
而 Secondary 則持續從 Primary 拉取新的 oplog 並在本地進行回放以達到同步的目的。
下面,看看一條 oplog 的具體形式:
{
"ts" : Timestamp(1446011584, 2),
"h" : NumberLong("1687359108795812092"),
"v" : 2,
"op" : "i",
"ns" : "test.nosql",
"o" : { "_id" : ObjectId("563062c0b085733f34ab4129"), "name" : "mongodb", "score" : "100" }
}
其中的一些關鍵字段有:
- ts 操作的 optime,該字段不僅僅包含了操作的時間戳(timestamp),還包含一個自增的計數器值。
- h 操作的全局唯一表示
- v oplog 的版本信息
- op 操作類型,比如 i=insert,u=update..
- ns 操作集合,形式為 database.collection
- o 指具體的操作內容,對於一個 insert 操作,則包含了整個文檔的內容
MongoDB 對於 oplog 的設計是比較仔細的,比如:
- oplog 必須保證有序,通過 optime 來保證。
- oplog 必須包含能夠進行數據回放的完整信息。
- oplog 必須是冪等的,即多次回放同一條日誌產生的結果相同。
- oplog 集合是固定大小的,為了避免對空間佔用太大,舊的 oplog 記錄會被滾動式的清理。
有興趣的讀者,可以參考官方文檔:
https://docs.mongodb.com/manual/core/replica-set-oplog/index.html
六、事務與一致性
一直以來,"不支持事務" 是 MongoDB 一直被詬病的問題,當然也可以說這是 NoSQL 數據庫的一種權衡(放棄事務,追求高性能、高可擴展)
但實質上,MongoDB 很早就有事務的概念,但是這個事務只能是針對單文檔的,即單個文檔的操作是有原子性保證的。
在4.0 版本之後,MongoDB 開始支持多文檔的事務:
- 4.0 版本支持副本集範圍的多文檔事務。
- 4.2 版本支持跨分片的多文檔事務(基於兩階段提交)。
在事務的隔離性上,MongoDB 支持快照(snapshot)的隔離級別,可以避免髒讀、不可重複讀和幻讀。
儘管有了真正意義上的事務功能,但多文檔事務對於性能有一定的影響,應用應該在充分評估後再做選用。
一致性
一致性是一個複雜的話題,而一致性更多從應用角度上提出的,比如:
向系統寫入一條數據,應該能夠馬上讀到寫入的這個數據。
在分佈式架構的CAP理論以及許多延續的觀點中提到,由於網絡分區的存在,要求系統在一致性和可用性之間做出選擇,而不能兩者兼得。
圖 -CAP理論
在 MongoDB 中,這個選擇是可以由開發者來定的。 MongoDB 允許客戶端為其操作設定一定的級別或者偏好,包括:
- read preference
- 讀取偏好,可指定讀主節點、讀備節點,或者是優先讀主、優先讀備、取最近的節點
- write concern
- 寫關注,指定寫入結果達到什麼狀態時才返回,可以為無應答(none)、應答(ack),或者是大多數節點完成了數據複製等等
- read concern
- 讀關注,指定讀取的數據版本處於怎樣的狀態,可以為讀本地、讀大多數節點寫入,或者是線性讀(linearizable)等等。
使用不同的設定將會產生對於C(一致性)、A(可用性)的不同的抉擇,比如:
- 將讀偏好設置為 primary,此時讀寫都在主節點上。 這保證了數據的一致性,但一旦主節點宕機會導致失敗(可用性降低)
- 將讀偏好設置為 secondaryPrefered,此時寫主,優先讀備,可用性提高了,但數據存在延遲(出現不一致)
- 將讀寫關注都設置為 majority(大多數),一致性提升了,但可用性也同時降低了(節點失效會導致大多數寫失敗)
關於這種權衡的討論會一直存在,而 MongoDB 除了提供多樣化的選擇之外,其主要是通過複製、基於心跳的自動failover等機制來降低系統發生故障時產生的影響,從而提升整體的可用性。
小結
本文主要揭示了 MongoDB 多個方面的細節,同時在使用體驗上也藉助 SQL 的概念做了一些對比。
從筆者的角度看,MongoDB 的發展性是很強的,其靈活快速的開發模式、天生自帶分佈式等能力彌補了傳統型SQL數據庫的缺陷。當然,目前的 NewSQL 本質上也貌似在以"模仿的方式"彌補這些缺陷。
希望本文的內容對你能有些參考。
出處: http://www.cnblogs.com/littleatp/, 如果喜歡我的文章
閱讀更多 Java高級互聯網架構 的文章